PUBLICATIONS / BOOKS

2016:

  1. Bayesian Multi-Trait Analysis Reveals a Useful Tool to Increase Oil Concentration and to Decrease Toxicity in Jatropha curcas L. DOI: 10.1371/journal.pone.0157038)
  2. Brief history of Eucalyptus breeding in Brazil under perspective of biometric advances. DOI: 10.1590/0103-8478cr20150645
  3. Oil content increase and toxicity reduction in jatropha seeds through family selection. DOI: 10.1016/j.indcrop.2015.10.034
  4. Selection in sugarcane based on inbreeding depression. DOI: 10.4238/gmr.15027965

2015:

  1. Application of neural networks to predict volume in eucalyptus. DOI: 10.1590/1984-70332015v15n3a23
  2. Artificial neural networks reveal efficiency in genetic value prediction. DOI: 10.4238/2015.june.18.22
  3. Comparison of methods used to identify superior individuals in genomic selection in plant breeding. DOI: 10.4238/2015.september.9.26
  4. Evaluation of cassava (Manihot esculenta Crantz) genotypes reveals great genetic variability and potential selection gain.
  5. Exploring natural variation of photosynthetic, primary metabolism and growth parameters in a large panel of Capsicum chinense accessions. DOI: 10.1007/s00425-015-2332-2
  6. Genetic diversity revealed dissimilarity among Mozambican cassava cultivars.
  7. Metodologia para análise de adaptabilidade e estabilidade por meio de regressão quantílica. DOI: 10.1590/s0100-204×2015000400004
  8. Molecular analysis reveals new strategy for data collection in order to explore variability in Jatropha. DOI: 10.1016/j.indcrop.2015.06.004
  9. Parental selection for the formation of interspecific hybrid populations of oil palm. DOI: 10.4025/actasciagron.v37i2.19145
  10. Plateau regression reveals that eight plants per accession are representative for Jatropha germplasm bank. DOI: 10.1016/j.indcrop.2014.11.056
  11. Selection of okra parents based on performance and genetic divergence. DOI: 10.5897/ajb2015.14952
  12. Superiority of artificial neural networks for a genetic classification procedure. DOI: 10.4238/2015.august.19.24

2014:

  1. Evaluation of interspecific hybrids of palm oil reveals great genetic variability and potential selection gain. DOI: 10.1016/j.indcrop.2013.10.036
  2. Neural networks for predicting breeding values and genetic gains. DOI: 10.1590/0103-9016-2014-0057
  3. Pré-melhoramento do camucamuzeiro: estudo de parâmetros genéticos e dissimilaridade. DOI: 10.1590/0034-737×201461040013
  4. Selfing confirmation in sugarcane by using simple sequence repeat markers: an individual reciprocal recurrent selection scheme. DOI: 10.4238/2014.October.31.11

2013:

  1. Artificial neural networks for adaptability and stability evaluation in alfalfa genotypes. DOI: 10.1590/S1984-70332013000200008
  2. Differential response of Jatropha genotypes to different selection methods indicates that combined selection is more suited than other methods for rapid improvement of the species. DOI: 10.1016/j.indcrop.2012.04.026
  3. Estimates of repeatability coefficients and selection gains in Jatropha indicate that higher cumulative genetic gains can be obtained by relaxing the degree of certainty in predicting the best families. DOI: 10.1016/j.indcrop.2013.08.016
  4. Genetic parameters and genotype x environment interaction for productivity, oil and protein content in soybean
  5. Joint analysis of phenotypic and molecular diversity provides new insights on the genetic variability of the brazilian physic nut germplasm bank. DOI: 10.1590/s1415-47572013005000033

© 2020 Universidade Federal de Viçosa - Todos os Direitos Reservados